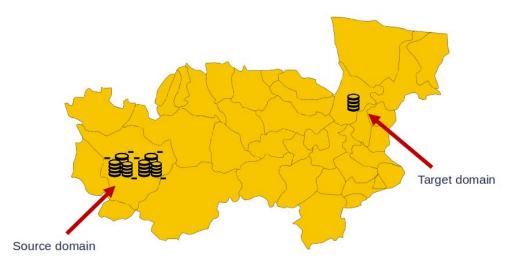


City Indicators for Mobility Data Mining

Mirco Nanni, Agnese Bonavita, Riccardo Guidotti

Introduction & Motivation


• Characterization of a geographical area through a set of quantitative measures is one of the most common tasks in mobility data analysis

• Difference display between cities, municipalities and other geographical units

- Application task: Geographical Transfer Learning
 - What if we want to predict the impact of an event on the urban mobility without having historical data on it?
 - Can knowledge be transferred from any city or are there some constraints?

Transfer Learning

Given some observations in a set of source geographical areas for some mobility-related tasks, and some observations about a target geographical area for some task, exploit the knowledge from the source domains to enable or improve models on the target domain.

Methodology

- Define a notion of **similarity** between areas
 - Based on several properties (geography, mobility, road network, etc)

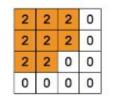
- Study the model transferability in a simple case
 - Task: Local, short term traffic prediction
 - Objective: test relation between transferability and similarity

Extracting of mobility related descriptive features of areas

• Objective: describe areas through multi-dimensional views

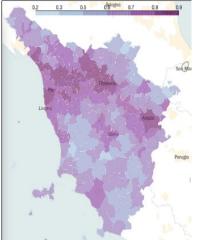
- Local features categories:
 - Spatial concentration
 - Intra-city Flows
 - Individual Mobility
 - Roads and traffic

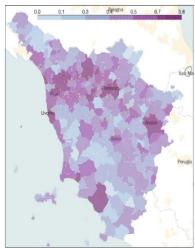
- Global features categories:
 - City Networks
 - Ego-Networks


Spatial Concentration

- Based on distribution of presence
 - Inferred from GPS traces
 - Based on a grid over the area

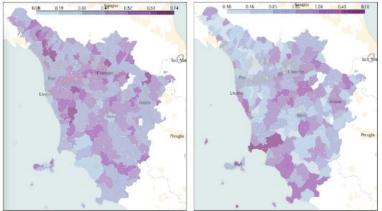
- Three values:
 - Entropy
 - Moran's I (spatial autocorrelation)
 - Average nearest neighbor distance


4	4	0	0	
4	4	0	0	
0	0	0	0	
0	0	0	0	


Entopy = 1.38 Norm. Entr. = 0.5 Moran's I = 0.61

Entopy = 2.08 Norm. Entr. = 0.75 Moran's I = 0.52

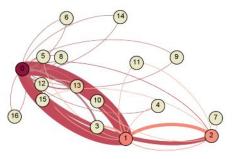
Flows in a Grid Network

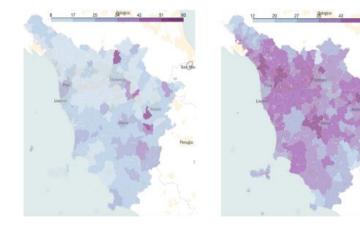

• Based on the Origin-destination flow matrix

- Network measures:
 - Average Node degree
 - Modularity of network communities (Louvain algorithm)

- Fitting with Physical mobility models:
 - Gravitation Model
 - Radiation Model

$$G_{ij} = A \frac{m_i^\alpha n_j^\beta}{r^\gamma} \qquad \qquad T_{ij} = \frac{T_i}{1 - \frac{m_i}{M}} \frac{m_i n_j}{(m_i + s_{ij})(m_i + n_j + s_{ij})}$$




Modularity (after Louvain partitioning) R2 fitting for Gravitational Model

Individual Mobility

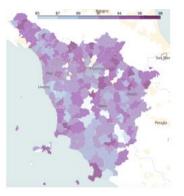
- Based on Individual Mobility Networks
 - Considers IMNs of users mostly moving in the area
- Various mobility & network measures:
 - Average size of IMNs
 - Average km driven by users
 - Time-uncorrelated entropy of in-degree
 - Radius of gyration
 - Percentage of regular trips
 - Modularity of network (Louvain)

Individual Mobility Networks

IMN Radius of gyration

IMN number of nodes

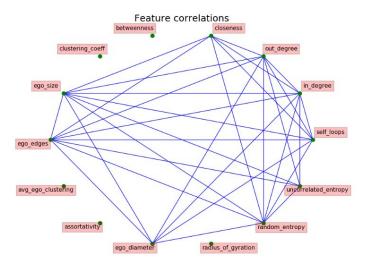
Road and Traffic Networks


• Consider both the road network and how the traffic distributes on it

- Basic statistics on the road network
 - Density of road edges, intersections, intersection degree, total and average length
 - Network centrality of roads

- Traffic distribution
 - Concentration of traffic over the hottest network edges

Traffic % in top 10% roads


Traffic % in top 50% roads

Complete Network of Cities

• Network where each city is a node and edges are drawn based on trajectories between them

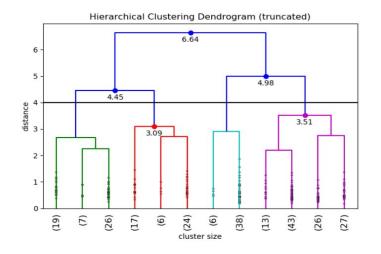
- Origin-Destination Matrix for the trips between two cities
- Extraction of attributes for the clustering step
 - $\circ \quad \ \ \text{self-loops}$
 - In/Out degrees
 - Closeness

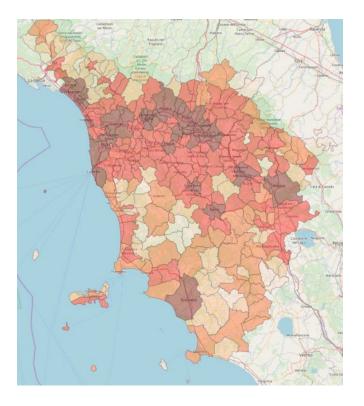
- Ego-Network for each city
 - # of nodes
 - \circ # of edges
 - average clustering coefficient

Case Study

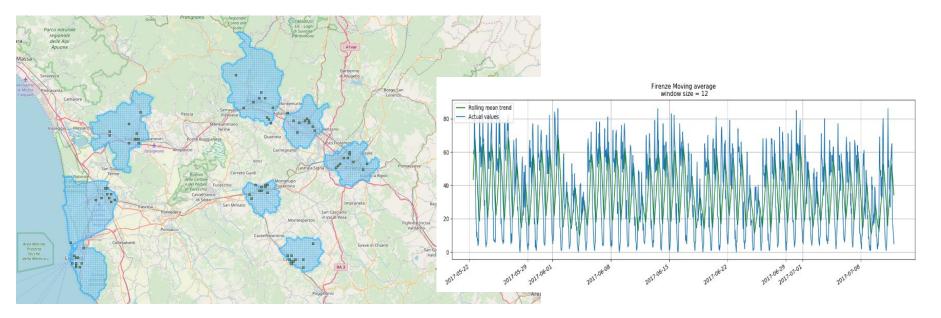
• Dataset of GPS traces from private vehicles

• 18.9 million trajectories of 250 cars in Tuscany region


• Tuscany divided in 276 municipalities

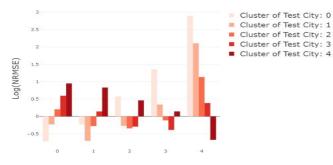

• Areas of 10 x 10 km for each municipality

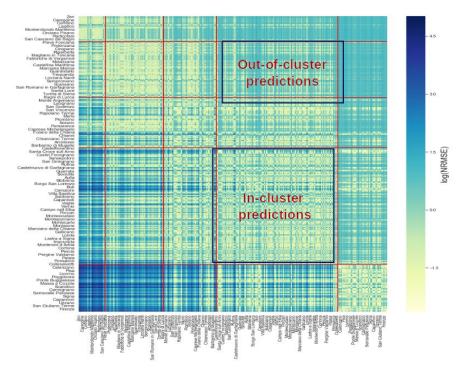
City Clustering


- Hierarchical cluster
- 5 different clusters

Similarity vs Transferability: Prediction Task

- Predict traffic volume in key portion of each city
- Prediction model in each city: XGBoost regression

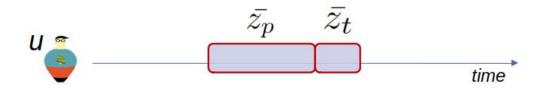


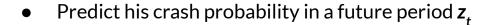

Testing Model transferability

- We want to test if similarities based on the city indicators are useful to identify areas with a better transferability
- The transfer is better between cities of the same cluster

Mean Value of NRMSE in each "Rectangle"

• Matrix is not simmetric


Cluster of Trained Model



- Definition of a set of local and global city indicators
- Test on a real case study
- Transfer Learning goal
- Results show that models trained on a municipality performs better when transfered on other municipalities belonging to the same cluster

Future and Ongoing Works: Crash Prediction task

• Given the historical mobility data H of a user in a time period z_p

$$p_{crash}(u) = P(u \text{ has crash in } \bar{z_t} \mid H_u^{\bar{z_p}})$$

